
Mining Contiguous Sequential Generators
in Biological Sequences

Jingsong Zhang, Yinglin Wang, Chao Zhang, and Yongyong Shi

Abstract—The discovery of conserved sequential patterns in biological sequences is essential to unveiling common shared functions.

Mining sequential generators as well as mining closed sequential patterns can contribute to a more concise result set than mining all

sequential patterns, especially in the analysis of big data in bioinformatics. Previous studies have also presented convincing arguments

that the generator is preferable to the closed pattern in inductive inference and classification. However, classic sequential generator

mining algorithms, due to the lack of consideration on the contiguous constraint along with the lower-closed one, still pose a great

challenge at spawning a large number of inefficient and redundant patterns, which is too huge for effective usage. Driven by some

extensive applications of patterns with contiguous feature, we propose ConSgen, an efficient algorithm for discovering contiguous

sequential generators. It adopts the n-gram model, called shingles, to generate potential frequent subsequences and leverages several

pruning techniques to prune the unpromising parts of search space. And then, the contiguous sequential generators are identified by

using the equivalence class-based lower-closure checking scheme. Our experiments on both DNA and protein data sets demonstrate

the compactness, efficiency, and scalability of ConSgen.

Index Terms—Sequential pattern mining, closed sequential pattern, sequential generator, contiguous sequential generator, DNA sequence,

protein sequence, motif finding

Ç

1 INTRODUCTION

CONSERVED frequent subsequences (motifs) in biological
sequences often reflect functionally meaningful shared

features. Sequential pattern mining, which identifies fre-
quent subsequences as patterns in sequence databases, is an
important data mining issue in bioinformatics communities.
It has shown board applications, including motif finding
and analysis [1], [2], [3], [4], [5], DNA sequence analysis [6],
[7], [8], protein sequence analysis [9], [10], and antimicrobial
develop [11]. The mining approaches have been studied
extensively, including general sequential pattern mining
[12], closed sequential pattern (CSP) mining [13], [14],
sequential generator mining [15], [16], [17], maximal
sequential pattern mining [18], [19], and interesting sequen-
tial pattern mining [20], [21], [22].

Due to the equivalence class principle [23], the problem of
mining compact representations of sequential patterns has
attracted more attention recently. Closed sequential patterns
and sequential generators are two classic patterns with com-
pact yet lossless compression. The former are upper-closed

while the latter lower-closed. Within an equivalence class,
the average length of the generators is no more than that of
closed patterns. Thus, the generator is preferable to the
closed pattern in inductive inference and classification.

Some algorithms have been developed for mining
sequential generators [15], [16], [17], such mining often pro-
duces a large number of frequent patterns satisfying the
support threshold, especially when the support is low or the
database is rich in frequent patterns. For example, biology
domain, the set of sequential generators derived by current
mining methods, has a significantly greater size than the
corresponding database and even the total length of the
database. Such result set is too huge for effective usage,
which is a rather ticklish problem facing previous pattern
mining algorithms. In addition, for generating such massive
patterns, the mining process is prohibitively expensive
naturally. Classic sequential generator mining algorithms,
including A priori-based and pattern-growth, share a poor
scalability in terms of support threshold and database den-
sity because too many frequent generators will occupymuch
memory and incur large search space for closure checking of
new patterns or pattern growth, which usually occurs when
the low support threshold or the dense database is used. The
huge number of sequential generators also makes some fur-
ther data analysis like feature selection and classification a
prohibitive task. Hence, what sequential patterns need to be
mined remains a problem, whichmust be more compact and
complete compared to the sequential generators.

With the increasing availability of biological sequences,
the mining of sequential generators with a certain specific
constraint has attracted much more attention since it
can lead to more concise patterns. One example is mining
the contiguous sequential generators, in which the items
appearing in the sequences that contain the pattern must be

� J. Zhang is with the Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China.
E-mail: jasun@dmbio.info.

� Y. Wang is with the Department of Computer Science and Technology,
Shanghai University of Finance and Economics, Shanghai 200433, China.
E-mail: wang.yinglin@shufe.edu.cn.

� C. Zhang is with the Department of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, IL 61801.
E-mail: czhang82@illinois.edu.

� Y. Shi is with the Bio-X Institutes, Shanghai Jiao Tong University,
Shanghai 200240, China. E-mail: shiyongyong@gmail.com.

Manuscript received 20 Apr. 2015; revised 24 Sept. 2015; accepted 9 Oct.
2015. Date of publication 26 Oct. 2015; date of current version 4 Oct. 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCBB.2015.2495132

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2016 855

1545-5963� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

adjacent w.r.t. the underlying ordering as typically defined
in the sequential generator [17]. Using sequential patterns
with contiguous feature can greatly benefit a wide spectrum
of real-life tasks as described before. Additionally, based on
a common sequence database, the average length of the con-
tiguous sequential generators is much shorter than that of
the closed sequential patterns with the same support thresh-
old. Therefore, the former patterns are usually preferable to
the latter ones according to the Minimum Description
Length principle (MDL) [24], [25], which has a sound statis-
tical foundation rooted in the well-known Bayesian infer-
ence and Kolmogorov complexity.

Existing techniques developed for mining compact
sequential patterns have focused on the study of scalable
methods for general sequential generator mining, which
does not involve the contiguous feature of patterns. Such
techniques cannot be directly applied to contiguous sequen-
tial generator (ConSG) mining. This is because the set of
contiguous sequential generators is not a proper subset of
the set of sequential generators or general sequential pat-
terns. Existing methods using a post-pruning step do not
perform the mining task. Moreover, such methods do not
record the pattern’s occurrences in the database. By pushing
the contiguous constraint (i.e., pre-pruning) into the mining
process, they will cost more memory space and running
time. Consequently, the major challenge is how to design an
effective algorithm to ensure the result patterns are contigu-
ous and meanwhile lower-closed. In the sequels, we will
call the sequential patterns satisfying the contiguous yet
lower-closed constraints contiguous sequential generator, and
seek to mine them in an effective and efficient fashion.

In this paper, we propose ConSgen, which employs
three steps to effectively identify contiguous sequential
generators. In the first step, ConSgen splits each sequence
of database into a series of snippets using the n-gram
model. The items in each snippet strictly keep the adja-
cency and ordering of the original sequences. The genera-
tion of such snippets avoids enumerating all possible
joints of frequent items, but guarantee information equiv-
alency. In the second step, ConSgen first uses a repeated
snippet checking method to ensure any unique snippet is
detected only once. Next, it checks the snippets’ fre-
quency by a technique called max-prefix-suffix pruning,
and counts the surviving snippets to determine if they
are frequent. Such pruning techniques greatly reduce the
search space of contiguous sequential generators. In the
third step, ConSgen introduces an equivalence class-
based lower-closure checking scenario to efficiently find
the contiguous sequential generators.

Our contributions are summarized as follows:

� We introduce the problem of mining contiguous
sequential generators in biological sequences. To the
best of our knowledge, we are first in attempting to
discover contiguous sequential generators that
reflect the adjacency of items and the lower-closure
of patterns simultaneously.

� We develop ConSgen for the proposed problem.
ConSgen algorithm does not rely on enumerating all
possible combinations of frequent subsequences to
produce potential longer patterns. Such algorithm

and the related datasets are available on our public
website, http://www.dmakd.com/ConSgen.aspx.

� Our extensive experiments on both DNA and protein
data sets show that, ConSgen is scalable to discover
contiguous sequential generators against support
threshold, and it outperforms compared methods
significantly in terms of compactness and efficiency.

The structure of this paper is as follows. In Section 2, we
focus on the formulation of contiguous sequential generator
mining problem as well as some notations used throughout
the paper. Section 3 studies some properties of contiguous
sequential generators and draws a solution to discover
the contiguous sequential generators. Experimental results
are reported in Section 4, followed by the related work in
Section 5. Section 6 concludes the paper.

2 PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first introduce some preliminary con-
cepts, and then formalize and exemplify the problem of con-
tiguous sequential generator mining, which provide a
necessary background for our algorithm development.

2.1 Preliminary Concepts

An item is a basic unit and can be a base or an amino acid in
bioinformatics. Let I ¼ fi1; i2; . . . ; img be a non-empty finite
set consisting of distinct items. A sequence S ¼< a1;
a2; . . . ; an > is an ordered list, which can be a series of base
pairs or amino acids accordingly. For brevity, a sequence is
also expressed as s ¼ a1a2 . . . an. According to the defini-
tions, notice that an item ai (i 2 ½1; n�) can occur more than
once in a sequence s. The size of a sequence, denoted as jSj,
is the number of unique items in the sequence. The length of
a sequence, denoted as lðSÞ, is the total number of items in
the sequence, i.e., lðSÞ ¼ n. A sequence with k items is also
termed a length-k sequence or k-sequence1 for short. The
number of distinct items in such a k-sequence is less than or
equal to k. For example, one sequence CAGTTCGCGC is a
10-sequence while its size is 4. With these basic notations,
we further define some notations and terms to smooth the
analyzing of ConSgen.

By examining the definitions of both closed itemset [26]
and closed sequential pattern [27], they share a common
feature that is the longest priority. We call such longest pri-
ority feature upper-closure or say the closed itemsets and the
closed sequential patterns are upper-closed. Similarly, We
call the shortest priority feature lower-closure or say the item-
set generators and the sequential generators are lower-closed.

Definition 1. Given two sequences S1 ¼< a1a2 � � � ai > and
S2 ¼< b1b2 � � � bj > , S1 is a contiguous subsequence of
S2, denoted as S1 v S2 (if S1 6¼ S2, written as S1 u S2), if and
only if there exist integers k1; k2; � � � ; ki such that: (1) 1 �
k1 < k2 < � � � < ki � j; and (2) a1 ¼ bk1 ; a2 ¼ bk2 ; . . . ;

ai ¼ bki . We also call S1 a snippet of S2, S2 a super-sequence
of S1, and S2 contains S1.

Definition 2. Given a sequence s and a sequence database D, the
absolute support of s in D is the number of sequences in D

1. In this paper, k-subsequence and k-pattern are used and indicate
the similar meanings.

856 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2016

that contain s, i.e., SupaDðsÞ ¼ jfSjS 2 D ^ s v Sgj. Simi-
larly, the relative support of s in D is the proportion of
sequences in D that contain s, i.e., SuprDðsÞ ¼ jfSjS 2
D ^ s v Sgj=jDj.
For the convenience of description, we use support

SupDðsÞ instead of both absolute support SupaDðsÞ and relative
support SuprDðsÞ if not explicitly stated in the rest of the pater.

Definition 3. Given a threshold s, a contiguous subsequence s is
a contiguous sequential pattern (ConSP) in database D if
SupDðsÞ � s.

Definition 4. Given a contiguous sequential pattern s in
sequence database D, s is a contiguous sequential generator
(ConSG) if there exists no contiguous sequential pattern s0

such that: (1) s0 u s, and (2) SupDðs0Þ ¼ SupDðsÞ.
Obviously, contiguous sequential generators satisfy the

lower-closed constraint shared with itemset and sequential
generators.

Definition 5. Given two sequences s1 ¼< a1a2 � � � ai > and
s2 ¼< b1b2 � � � bj > , and a sequence database D, s1 is
absorbed by s2 (or s2 absorbs s1), denoted as s1 u¼ s2, if
(1)lðs1Þ51, s1 u s2, and (2) SupDðs1Þ ¼ SupDðs2Þ.

Definition 6. Given two sequences s1 ¼< a1a2 � � � ai > and
s2 ¼< b1b2 � � � bj> , s1 is a max-prefix of s2, denoted as
s1 upre s2, if (1) lðs1Þ51, lðs2Þ � lðs1Þ ¼ 1; and (2) a1 ¼ b1;

a2 ¼ b2; . . . ; ai ¼ bj�1.

Definition 7. Given two sequences s1 ¼< a1a2 � � � ai > and
s2 ¼< b1b2 � � � bj> , s1 is a max-suffix of s2, denoted as
s1 usuf s2, if (1) lðs1Þ51, lðs2Þ � lðs1Þ ¼ 1; and (2) a1 ¼ b2;

a2 ¼ b3; . . . ; ai ¼ bj.

For simplicity, if the context is clear we appellatively call
max-prefix and max-suffix max-prefix-suffix (or prefix-suffix
for short) in the remainder of the paper.

2.2 Problem Statement

Let’s first use a example shown in the following to convey
the differences of four sequential patterns, i.e., sequential
pattern (SP), closed sequential pattern, sequential generator
(SG), and contiguous sequential generator.

Example 1. Given a sequence database D as shown in
Table 1 and an absolute support s ¼ 2. The input data-
base exhibited in the second column of the table has a
total of four distinct items (base pairs) and four input
sequences (i.e., jDj ¼ 4). Four types of frequent patters
with their absolute supports attached after “:”, are eli-
cited from D respectively (see Table 2). The full set of fre-
quent sequences contains 17 patterns, excluding the

empty pattern f, which is trivially frequent.2 While the
full set of closed sequential patterns is only 6. Similarly,
the whole set of sequential generators consists of 11 pat-
terns. In contrast, the size of contiguous sequential gener-
ator set is only 5. The third column shows the average
lengths of the above four patterns. It is easy to see that
the average length of sequential generators is smaller
than that of both sequential patterns and closed sequen-
tial patterns, while the average length of the contiguous
sequential generators is even smaller than that of sequen-
tial generators. Informally, given an input sequence data-
base and a user-specified support threshold, the size of
contiguous sequential generator set is much smaller than
that of sequential generator set. Moreover, the contigu-
ous sequential generators hold the smallest average
length compared to three other patterns.

Problem statement. Given a sequence database D and a mini-
mum support s, the problem of mining contiguous sequential
generators is to discover the full set of contiguous subsequences
with lower-closure feature.

A full set of sequential patterns and that of contiguous
sequential patterns can be partitioned into some equiva-
lence classes. For a pattern s, a classification function can be
defined as fðsÞ ¼ fS 2 Djs v Sg [23], where S is a sequence
in database D. Assume EC is one of the equivalence classes
of a full set F . If there exist two patterns s1 2 EC and
s2 2 EC, then fðs1Þ ¼ fðs2Þ. Specifically, given a contiguous
frequent sequential pattern set F , we define a function
for the equivalence class in F : ECF ¼ fs 2 F j8ðsi; sjÞ ^
ðSupDðsiÞ ¼ SupDðsjÞÞ^ 9ðs0 2 F Þ ^ ðsi v s0 ^ sj v s0Þg. Note
that such function is independent of the database D, which
is preferred for the closure checking. Consider the definition
of contiguous sequential pattern as shown in Definition 3.
The pattern set F consists of a series of directed acyclic
graphs. These graphs can be transformed to some full
binary trees, each node of which corresponds to a frequent
pattern. According to the function ECF , each complete
equivalence class falls in one of the full binary trees and
shares the same actual support. Mathematically, the prob-
lem of mining contiguous sequential generators can be con-
verted to the identifying and partitioning of equivalence
classes in F . Given an equivalence class EC, the full set of

TABLE 1
An Example Sequence DatabaseD

Sequence Id Sequence

1 CAAGC
2 AGCGT
3 CAGC
4 AGGCA

TABLE 2
Comparison of Four Types of Frequent Patterns

Sequence type Frequent patterns Avg. length

SP A:4, AA:2, AG:4, AGG:2, AGC:4,
AC:4, G:4, GG:2, GC:4, C:4, CA:3,
CAG:2, CAGC:2, CAC:2, CG:3,

CGC:2, CC:2

2.235

CloSP AA:2, AGG:2, AGC:4, CA:3,
CAGC:2, CG:3

2.667

SG A:4, C:4, G:4, AA:2, CC:2, CG:3,
GG:2, CA:3, CAG:2, CAC:2,

CGC:2

2.000

ConSG C:4, A:4, G:4, CA:3, AGC:3 1.600

2. For brevity, we ignore the empty pattern without affecting the
demonstration in the rest of this paper.

ZHANG ET AL.: MINING CONTIGUOUS SEQUENTIAL GENERATORS IN BIOLOGICAL SEQUENCES 857

generators in EC is fs 2 ECjð@s0 Þðs0 2 ECÞ ^ ðs 6¼ s
0 ^ s

0 v
sÞg or fs 2 ECjð@s0 Þðs0 2 ECÞ ^ ðs0 u sÞg.

Fig. 1 shows all the contiguous sequential patterns of the
database in Table 1. There are five equivalence classes
marked by dotted lines, i.e., EC0 to EC4, where EC0 is an
empty one.Generally, a non-empty equivalence class contains
one or more levels. When there is only one level, all the pat-
terns of it are both generators and closed patterns. For exam-
ple, equivalence classes EC3 and EC4, each of them only has
one level. Thus patterns <CA> and <AGC> are both con-
tiguous generators and closed contiguous patterns. When the
number of levels is two ormore, the patterns at the bottom are
the closed patterns while those at the top are the generators.
Therefore, the sets of contiguous generators of EC1 and EC2

are f<C> ; <G> g and f<G> ; <A> g respectively. By
finding such patterns at the top of each equivalence class inF ,
we can obtain the full generators as shown in the last row of
Table 2.

3 DEVELOPMENT OF EFFICIENT MINING METHOD

In this section, we first perform step-by-step analysis to
develop an efficient method for mining contiguous sequen-
tial generators, then present the ConSgen algorithm in detail.

The algorithm works on a three-step manner. In the first
step, each sequence S of input sequence database D is split
into a series of snippets (i.e., candidate contiguous subse-
quences) which preserve the original ordering of items. The
length of the snippets is fixed within one complete scan in
D, while it incrementally increases by step length 1 accord-
ing to the n-gram model [22] in subsequent scans. Next
step, by exploring some properties of contiguous sequential
generators, three effective pruning techniques, redundant
snippet pruning, max-prefix-suffix pruning, and support
pruning are proposed to prune the pointless parts of search
space. The occurrence frequencies of the remaining candi-
dates which passed through the first two pruning proce-
dures will be counted in the database respectively. Such a
process iterates until no more distinct patterns exist. A full
set consisting of all contiguous sequential patterns is
obtained accordingly. In the third step, all contiguous
sequential non-generators are distinguished successively
from the set of contiguous sequential patterns by perform-
ing the lower-closure checking, as suggested in Definition 4
and Theorem 2. In summary, By splitting the input

sequences, progressively pruning them via three techniques
and then using the the lower-closure constraint, ConSgen
can discover contiguous sequential generators effectively.

3.1 Candidate Generation by N-Gram Model

Many conventional algorithms developed for mining
sequential generators, due to ignoring some specific fea-
tures of sequential patterns, need to enumerate all possible
combinations of frequent subsequences to produce potential
longer patterns, resulting in a heavy burden of both mem-
ory and time usage. In addition, two adjacent elements (or
items) in a pattern (see FSP , FCloSP , and FSG as shown in
Table 2) may not be adjacent in a sequence that contains the
pattern, which is unsuitable for some tasks as mentioned
earlier. To tackle such two problems, we use the n-gram
model to generate candidates, the items of which strictly
keep the original adjacency and ordering. Every candidate
is produced by splitting the sequences of input database
rather than by enumerating all possible combinations of fre-
quent subsequences, which is inherently costly in both run-
time and space usage.

Let S be a sequence in sequence database D. In the first
stage, called C1-splitting, each sequence S is split into a set
of length-1 snippets (subsequences), in which each snippet
contains only one single item. And these snippets are
checked if they are frequent. In the second stage, named
C2-splitting accordingly, each sequence S is also split into
some snippets by length-2 window and the frequencies of
them are determined in next pruning steps. Unlike the
candidates through classic algorithms, such snippets
(candidates) are both under a contiguous constraint and
preserving the original ordering in database. The following
stages are similar to the second one. Such a process repeats
until no more candidates generate or no candidates equal to
or exceed the minimum support. Let us examine how to use
the n-gram model for splitting the input sequences based
on our running example.

Example 2. The first sequence of Table 1, i.e., S1 ¼
<CAAGC> , is reused in this example. In C1-splitting
stage, a 1-subsequence set, i.e., C1 ¼ fC;A;A;G;Cg3 is
formed by splitting the sequence S1. And then the
C2-splitting generates a 2-subsequence set C2 ¼ fCA;
AA;AG;GCg that is contains four elements (subsequen-
ces). The remaining sets produced by ConSgen are
C3 ¼ fCAA;AAG;AGCg, C4 ¼ fCAAG;AAGCg, and
C5 ¼ fCAAGCg respectively.
The splitting manner seems rather brute force at first

glance. In practice, the process terminates its splitting far
before the snippets actually reach length-5 by employing
several wise pruning paradigms, which will be elaborated
in next section.

3.2 Search Space Pruning

By using the n-gram model detailed in Example 2, every
sequence of database is discretized into a series of snippets
as candidate subsequences which are rather coarse because

Fig. 1. Contiguous sequential patterns and equivalence classes.

3. The repeated elements such1 as items A and C, will be first
discarded in next pruning step.

858 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2016

they may contain a large number of inefficient and redun-
dant patterns. To substantially reduce the memory usage
and search space, we examine some properties of contigu-
ous sequential patterns in the sequel, which underpin the
design of pruning schemes.

Theorem 1. Given a sequence s (lðsÞ51) and a sequence database
D, suppose SupDðsÞ ¼ s, then each non-empty subsequence s0

of s satisfies SupDðs0Þ5s.

Proof. LetX be an itemset,Xsub be a set consisting of all sub-
sets of X, T be a Transaction, suppose SupT ðXÞ ¼ s, then
each non-empty element x 2 Xsub satisfies SupT ðxÞ5s

according to the downward closure property of the A
priori [28]. Without loss of generality, let Y be a sequence
with all items of X listed by a certain ordering, Ysub be a
set consisting of all subsequences of Y , then the support
of Y in T is the same as the X in T , i.e., SupT ðY Þ ¼
SupT ðXÞ ¼ s, while Ysub � Xsub, then each non-empty
element, i.e., non-empty subsequence y 2 Ysub satisfies
SupT ðyÞ5s. The correctness of Theorem 1 then becomes
immediate. tu

Lemma 1. Given a sequence s (lðsÞ52), suppose s is frequent in
sequence database D, then both max-prefix spre and max-suffix
ssuf are frequent inD.

Proof. Let F be a set consisting of all subsequences of s, then
each element of F , i.e., 8s0 2 F is frequent by virtue of
Theorem 1. The max-prefix spre 2 F and the max-suffix
ssuf 2 F . Then both are frequent. The lemma holds
immediately tu

Lemma 2. Given a sequence s (lðsÞ52) and a sequence database
D, if there exists no frequent max-prefix or max-suffix of s, i.e.,
SupDðspreÞjs or SupDðssufÞjs holds, then s can be safely
pruned.

Proof. Easily derived from Theorem 1 and Lemma 1. tu
The pruning process of ConSgen gives itself the minimal

burden to run, representing a three-section manner toward
contiguous sequential generator mining.

Redundant snippet pruning. In real-world datasets, some
snippets often appear multiple times, not only among dif-
ferent sequences but also inside one sequence. For each
newly split snippet, we check the previous snippets to see
whether the new one already exists. The repeated snippets
can be easily identified and discarded on-the-fly. Hence, it
is desirable that the redundant snippet pruning is assigned
in the first step to ensure the repeated snippets are pruned
as early as possible, which avoids unnecessary max-prefix-
suffix checking and support counting. In short, This step
leverages a repeated snippet checking strategy to guarantee
any distinct snippet is detected only once, which can largely
speed up ConSgen’s mining process.

Max-prefix-suffix pruning. Unlike classic candidate enu-
merate-and-test paradigm, max-prefix-suffix pruning, for a
new length-k snippet s, does not need to check all its
ðk� 1Þ-subsequences if there exist an infrequent one.
Instead, it checks only the frequency of the max-prefix-suf-
fixes of s. The length-k snippet is pruned immediately if
its max-prefix or max-suffix is infrequent as indicated
by Lemma 2. Obviously, in the worst case, most previous

techniques need to check Ck�1
k ¼ k times. In contrast, our

pruning scheme takes at most two times. Thus, such a
scheme can efficiently filter the futile snippets from the first
pruning stage. We find that this manner significantly
improves the performance in our real experiments, and the
pruning cost is nearly negligible compared to the aggregate
running time.

Support pruning. A snippet is called a promising candi-
date if it meets: (1) it is distinct from the previous snippets
(already split snippets); and (2) both the max-prefix and the
max-suffix of the snippet are frequent. Such snippets satisfy-
ing the above two conditions can be shifted to count their
supports and check whether they are frequent. For each
promising candidate s, it is natural to use the conventional
matching method to count the actual support, however,
ConSgen does not need to check whether every sequence in
the database contains s. Instead, it only checks the sequences
from the next one of the current sequence identifier to the end
of the database,which effectively prevents redundant snippet
matching operations and accelerates the counting process.

A set consisting of length-k contiguous sequential pat-
terns is formed when no more new k-patterns appear by
iterating over above process, and the complete set of contig-
uous sequential k-generators can be discovered by perform-
ing the sequel pattern lower-closure checking technique.

3.3 Equivalence Class-Based Lower-Closure
Checking

Next, ConSgen will distinguish contiguous sequential non-
generators from the full set of contiguous sequential pat-
terns. The problem is to check for each pattern s, whether
there is a super-pattern absorbing s, according to the defini-
tion of equivalence class and Definition 5. Obviously a naive
method, which compares each pattern with other patterns

in the discovered set, is infeasible due to its OðN2Þ complex-
ity. An interesting finding is that the contiguous sequential
generators hold the transitivity among pattern subsets, each
of which consists of single-length frequent patterns. Such a
property is launched by ConSgen for pattern lower-closure
checking to achieve excellent efficiency.

Theorem 2. Given three sequences s1, s2 and s3, where s1 u s2
and s2 u s3, if both s1 u¼ s2 and s2 u¼ s3 hold, then s1 u¼ s3
holds in the meantime.

Proof. Let SupDðs1Þ ¼ s1, SupDðs2Þ ¼ s2 and SupDðs3Þ ¼ s3.
(i) Because s1 u s2 and s2 u s3, we have s1 u s3 by
Definition 1; (ii) Based on s1 u¼ s2 and s2 u¼ s3, then
s1 ¼ s2 and s2 ¼ s3 hold, so s1 ¼ s3. With (i), (ii) and
Definition 5, we complete our proof. tu
Assume there are two contiguous sequential pattern sets,

a set Fk�1 consisting of length-ðk� 1Þ patterns and a set Fk

consisting of length-k ones (where k52). A pattern s in Fk is
lower-closed if there exists no element of Fk�1 which is
absorbed by s with the same support. Specifically, each pair
of max-prefix-suffixes of the length-k contiguous sequential
patterns are first calculated by Equations (1) and (2) of [14].
In the following, the set of length-ðk� 1Þ contiguous
sequential patterns is scanned for checking whether there
exists a pattern satisfying itself and its support count are
respectively equal to the max-prefix-suffix and the support

ZHANG ET AL.: MINING CONTIGUOUS SEQUENTIAL GENERATORS IN BIOLOGICAL SEQUENCES 859

count of current k-pattern based on Definition 4. Depending
on the definition of equivalence class within contiguous
sequential pattern set, a length-k contiguous sequential pat-
tern is lower-closed if the above two-fold conditions are sat-
isfied simultaneously. This length-k checking is continued
until every element of the length-k set has been visited.
From the whole mining process point of view, once a new
set of length-k contiguous sequential patterns is formed
completely, the pattern lower-closure checking step can be
conducted on-the-fly. By progressively checking, the whole
contiguous sequential non-generators are efficiently identi-
fied and the remaining are generated using the equivalence
class theory and the lower-closure property.

3.4 ConSgen Algorithm

In this section, for elaborating ConSgen, we first introduce
several data structures. Three concise data structures are
employed for performing our mining task: The input
sequence database D is represented by a set of 2-tuples
ðS:id; SÞ, where S:id is a sequence identifier and S a
sequence itself. The contiguous sequential generator and
non-generator share the same data structure: a triple
ðf; f:count;BÞ, where f is a pattern itself, f:count is the sup-
port count of f inD, and the last attribute variable “B” takes
on the values “Y ” and “N”. Y indicates f holds the lower-
closure, while N the non-lower-closure. The final output of
the algorithm is a set F , which consists of all contiguous
sequential patterns including generators and non-genera-
tors. The inside patterns of F can be organized into a set
ffF1g; fF2g; . . . ; fFkgg consisting of k different partitions,
each of which is a subset of single-length patterns.

Algorithm 1. ConSgen(D, s)

Input: sequence databaseD, support threshold s

F ;; // initialize F to store the ConSGs
Fk ;; // initialize Fk to store the length-k ConSPs

1: Fk�1 init-gen(D; s) // generate the frequent 1-ConSPs
2: Fk [k�1Fk�1;
3: for each Fk�1 6¼ ; do
4: Fk ConSP-gen(D;Fk�1; s);
5: if Fk 6¼ ; then
6: Fk ConSG-gen(Fk�1; Fk);
7: F [kFk;
8: end if
9: Fk�1 Fk;
10: end for
Output: F ;

Algorithm 1 sketches ConSgen algorithm that mines the
set of contiguous sequential generators. As shown, given a
transformed database D and a support threshold s, we
define global variables F and Fk to store all length contigu-
ous sequential generators and only length-k contiguous
sequential patterns respectively. The frequent sequential 1-
pattern set F1 is first derived by running the init-gen() func-
tion (subroutine, line 1). Such 1-patterns are directly added
to set F without checking the lower-closure property since
length-1 patterns are all generators based on Definition 4
(line 2). Those 1-patterns are treated as ðk� 1Þ-generators to
feed ConSP-gen() function for checking longer contiguous
sequential patterns (2-patterns). Based on the database D,

support threshold s and the ðk� 1Þ-patterns just generated,
function ConSP-gen() produces a set of length-specified
contiguous sequential patterns (i.e., k-patterns). Subse-
quently, according to the intermediate output set Fk consist-
ing of length-k contiguous sequential patterns just obtained
and the intermediate output set Fk�1 consisting of length-
ðk� 1Þ contiguous sequential patterns last obtained, the
length-k contiguous contiguous generators in Fk are distin-
guished from general contiguous sequential patterns by
calling ConSG-gen() effectively (line 6). ConSP-gen() and
ConSG-gen() are performed alternately until the output set
Fk is empty.

The output of ConSgen is a pattern set F ¼ fðf;
f:count;BÞjf:count � sg. The full contiguous sequential
generators can be easily derived from such F via attribute
B, i.e., FConSG ¼ fe 2 F jB ¼ Y g. Better still, the complete set
F , which consists of all contiguous sequential patterns
including generators and non-generators, can be regarded
as a byproduct along with our mining task. In the sequel,
the preceding three functions will be discussed below.

Function init-gen(), as the first yet unique pass, is run for
finding all the frequent length-1 sequential patterns, which
are fed to the identification of 2-patterns. Compared with
the function ConSP-gen(), init-gen() does not need to check
the frequency of the max-prefix-suffixes since each candi-
date pattern only has one item. Such two functions share
the rest of the procedure, which will be detailed in next
illustration of function ConSP-gen().

Function 1. init-gen(D; s)

Input: a sequence databaseD
F1 ;; // initialize F1 to store the frequent 1-patterns
P1 ;; // initialize P1 to store the checked subsequences

1: for each sequence S 2 D do
2: for each 1-subsequence s 2 S do
3: if s 2 P1 then
4: continue;
5: else
6: for each sequence S0 2 ðD� ðS1; S2; . . . ; SS:idÞÞ do
7: if s v S0 then
8: s:countþþ; // increment the support count
9: end if
10: end for
11: if s:count=n � s then
12: F1 [1ðs; s:count; Y Þ; // n is jDj, Y is default
13: end if
14: P1 [1s;
15: end if
16: end for
17: end for

Return F1;

Function ConSP-gen() is invoked for discovering the
length-k ðk52Þ contiguous sequential patterns. Those can-
didate k-subsequences provided by splitting the initial
sequences are eliminated safely if they exist in the snippet
set Pk, because all elements of it have been checked before
(line 3 and 4). Each distinct snippet is checked by max-pre-
fix-suffix pruning scheme, which ensures the infrequent
candidates are identified and pruned before support prun-
ing (line 5). The star character “	” appearing in triple

860 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2016

ðspre; 	; 	Þ and ðssuf ; 	; 	Þ is regarded as wildcard to accept
any value. For calculating the support of a promising candi-
date, it does not need to scan the whole database. Instead, it
only compares with such sequences from the next sequence
of current identifier to the last one in the database (lines 6-
10). Lines 11-13 show that a candidate is added to the
length-k pattern set Fk if its support is no less than the
threshold s. Each pattern in Fk is represented as a triple
ðs; s:count; Y Þ, in which signature Y is default value. Finally,
the function returns a full length-k contiguous sequential
pattern set.

Function ConSG-gen() is performed for identifying all
the length-k contiguous sequential generators according
to the set of alreadymined length-ðk� 1Þ contiguous sequen-
tial patterns and the set of newly found length-k ones. Each
discovered pattern s, as one of the attributes in tuple
ðs; s:count; BÞ existing in Fk, first produces twomaximal sub-
sequences, i.e., max-prefix spre andmax-suffix ssuf , according
to Equations (1) and (2) of [14] (line 1). And then the function
scans Fk�1 to find such two tuples whose first attribute val-
ues are equal to spre or ssuf (line 2 and 5). Tuple ðs; s:count; Y Þ
in Fk is replaced by ðs; s:count;NÞ if spre:count from Fk�1 and
s:count from Fk are equal as well as spre and s (line 3). Simi-
larly, tuple ðs; s:count; Y Þ is checked subsequently (line 6).
By continually replacing the contiguous sequential non-gen-
erators in length-k pattern set, the output set Fk consists of
contiguous sequential generators labeled with Y and non-
generators labeledwithN .

Function 2. ConSP-gen(D;Fk�1; s)

Input: a sequence database D, support threshold s,
ðk� 1Þ-pattern set Fk�1
Fk ;; // initialize Fk to store the frequent k-patterns
Pk ;; // initialize Pk to store the checked subsequences

1: for each sequence S 2 D do
2: for each k-subsequence s 2 S do
3: if s 2 Pk then
4: continue;
5: else if ðspre; 	; 	Þ 2 Fk�1 and ðssuf ; 	; 	Þ 2 Fk�1 then
6: for each sequence S0 2 ðD� ðS1; S2; . . . ; SS:idÞÞ do
7: if s v S0 then
8: s:countþþ; // increment the support count
9: end if
10: end for
11: if s:count=n � s then
12: Fk [kðs; s:count; Y Þ; // n is jDj, Y is default
13: end if
14: end if
15: Pk [ks;
16: end for
17: end for

Return Fk;

Considering the ConSgen algorithm attentively, the run-
ning time is mainly affected during snippet splitting and
redundant snippet pruning because most invalid candi-
dates are pruned in such two stages. The whole time
consumption is approximately the sum of splitting and
redundant snippet pruning cost under careful scrutiny.
Without loss of generality, let k be the maximal length of
patterns and S be a sequence in original database D. The

database length n is computed by
PjDj�1

i¼0 lðSiÞ, where i is
the identifier of S in D. And then the aggregate execution
times of above two procedures is 2knþ kðk� 1Þmathemati-
cally, where k is a small constant in real-life mining task.
Consequently, the complexity of ConSgen algorithm is
OðnÞ, which is linearly scalable in terms of the database size.

Function 3. ConSG-gen(Fk�1; Fk)

Input: a set Fk�1 with length-ðk� 1Þ ConSPs, a set Fk with
length-k ConSPs

1: for each element ðs; s:count; Y Þ 2 Fk do
2: if ðspre; spre:count; Y Þ 2 Fk�1 then
3: replace ðs; s:count; Y Þwith ðs; s:count;NÞ in Fk;
4: end if
5: if ðssuf ; ssuf :count; Y Þ 2 Fk�1 then
6: replace ðs; s:count; Y Þwith ðs; s:count;NÞ in Fk;
7: end if
8: end for

Return Fk;

We have carefully examined the design of ConSgen,
which formulates several termination conditions to make
the recursive process return early on, so as to accelerate the
identifying process of contiguous sequential generators.
During the mining process, we do not need to load the full
data into memory. Instead, only one sequence resides in
memory at any time, which eliminates the cost of allocating
and freeing memory and makes mean shift well suited for
discovering contiguous sequential patterns in big data sets.

4 EMPIRICAL RESULT

In this section, we will report the a series of experimental
results to verify the following claims: (1) The set of discov-
ered contiguous sequential generators is more compact
than that of general sequential generators. (2) ConSgen
holds the significantly better efficiency with varied support
thresholds compared to the state-of-the-art algorithms. (3)
ConSgen has a good scalability for the biological sequence
databases in terms of both memory and runtime usage.

4.1 Test Environment and Data Sets

We performed an extensive performance study to evaluate
various aspects of algorithm ConSgen. All the experiments
were conducted on a computer with Intel Core i7 2.4 Ghz
CPU, 8 GB memory, and Windows 7 installed. In the experi-
ments we compared ConSgen with a sequential pattern
mining algorithm PrefixSpan [12], two closed sequential
pattern mining algorithms CloSpan [27] and BIDE [29], and
three sequential generator mining algorithms VGEN [15],
FEAT [16] and FSGP [17]. The source codes of preceding six
algorithms can be derived from the SPMF data mining
library [30].

This section presents the results of our experimental
study performed on both DNA and protein datasets. The
first dataset, AX829204, can be downloaded from the
National Center for Biotechnology Information website. It is
a Homo Sapiens (human) DNA sequence consisting of
12,680 base pairs (bp), and has been studied for the diagno-
sis of breast cancer. We randomly sampled 1,000 sequences
with a length-20 to form the dataset for our practical

ZHANG ET AL.: MINING CONTIGUOUS SEQUENTIAL GENERATORS IN BIOLOGICAL SEQUENCES 861

experiments. The second dataset, WP_044990988, is also
available at the above website. It is a Rhodococcus equi
protein sequence consisting of 8,934 amino acids, and has
been annotated on many different RefSeq genomes from
the same or different species. Similarly, A dataset consist-
ing of 1,000 20-sequences are generated for our experi-
ments. The DNA dataset is dense, while the protein
dataset is a little sparse. For brevity, we call AX829204 a
dataset DNA and WP_044990988 a dataset Protein in the
remainder of the paper.

4.2 Compactness Study

The compactness study in the two real datasets is reported
as follows: Fig. 2 depicts the distribution comparison
between discovered contiguous sequential generators
(ConSGs) and sequential generators (SGs) on dataset DNA.
Fig. 2a shows the distribution of ConSGs against their
length for support thresholds varying from 2.0 to 4.0 per-
cent, while Fig. 2b shows the distribution of SGs. From the
above two sub-figures, we can see that the longest ConSGs
have a length of 6 while the longest SGs are up to 11 at sup-
port 2.0 percent. The biggest subset consisting of single-
length ConSGs occurs at length 5 while the biggest subset
consisting of single-length CloSPs is at length 9. The 5-pat-
tern subset in Fig. 2a contains only 323 patterns but the 9-
pattern subset in Fig. 2b more than 232k ones, which is far
more numerous than the former.

We also used the dataset Protein to compare the distribu-
tion of discovered ConSGs and SGs. Fig. 3a shows the distri-
bution of the number of the ConSGs against the length of
themselves with varied support thresholds. We can see that
the most patterns are quite short, while the maximal length

of SGs as shown in Fig. 3b reaches length 7. In common
with Fig. 2b, when the pre-specified support threshold
tends towards a low value, for example, at support 1.5 per-
cent, the number of SGs increases dramatically.

To further quest the performance, the sets of frequent
sequential patterns, closed sequential patterns and sequen-
tial generators were obtained by performing PrefixSpan,
CloSpan, and VGEN algorithms in aforementioned two
datasets respectively. Fig. 4 shows the distributions of four
pattern groups, i.e., SPs, CloSPs, SGs, and ConSGs, each of
which is displayed with varied support thresholds for the
two datasets. In Fig. 4a, the numbers of sequential genera-
tors formed by previous algorithms vary from 149,136
(s ¼ 4:0%) to 392,029 (s ¼ 2:0%), which are more than 149
times larger than the size of initial dataset. While the num-
bers of contiguous sequential generators are only from 303
to 657 at the corresponding support thresholds. Fig. 4b
shows the similar observation. From Figs. 4a and 4b, we can
see that the set of SGs is slightly more compact than that of
SPs, while the set of ConSGs is much more compact than
that of SGs. In addition, for all the test cases where the data-
sets varied from dense to little sparse, the set of contiguous
sequential generators is more concise than that of sequential
generators and the performance gap gets larger and larger.

The average lengths of SGs and ConSGs are also pre-
sented for support thresholds varying from 4.0 to 2.0 per-
cent. From Fig. 5a, the average length of identified ConSGs
increases from 3.79 to 4.38, while that of SGs from 8.22 to
8.89. Of the two patterns, the length of the former is almost
half of that of the latter. Similarly, on dataset Protein, the
lengths of SGs and ConSGs have the similar performance as
shown in Fig. 5b. For both dataset DNA and dataset Protein,

Fig. 2. Distribution comparison between the two patterns on dataset DNA. (a) The distribution of ConSGs against their length for support thresholds
varying from 2.0 to 4.0 percent. (b) The distribution of SGs against their length for support thresholds shared with Fig. 2a.

Fig. 3. Distribution comparison between the two patterns on dataset Protein. (a) The distribution of ConSGs against their length for support thresh-
olds varying from 1.5 to 3.5 percent. (b) The distribution of SGs against their length for support thresholds shared with Fig. 3a.

862 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2016

the average length of the contiguous sequential generators
is much shorter than that of general sequential generators
with the same support threshold.

The above performances demonstrate the compactness of
ConSgen. The set of contiguous sequential generators gener-
ated by ConSgen is more than two orders of magnitude less
size than the set of SPs, CloSPs, and SGs by PrefixSpan, Clo-
Span, and VGEN on both DNA and protein sequence data-
sets, especially when the support threshold is low or the
dataset is rich in frequent patterns. In addition, the average
length of contiguous sequential generators is shorter than
that of sequential generators and thus the contiguous sequen-
tial generators are preferable in terms of sequence analysis.

4.3 Efficiency Study

We tested ConSgens efficiency in both runtime and memory
usage for the two real datasets in terms of the support
threshold. Table 3 shows the processing time of the seven
well-known algorithms at different support thresholds on
dataset DNA. We can find that the three algorithms under
the dotted line are dramatically slower than the first four
ones. For example, FEAT’s runtime grows up to 10,702.359
seconds (nearly three hours) when the support threshold is
2 percent. For presenting the fine-grained runtime of ConS-
gen, Fig. 6a illustrates the curves of processing time of the
four faster algorithms only. The testing result makes clear
distinction among the algorithms tested. It shows the same
ordering of the algorithms for runtime: “ConSgen <
VGEN < CloSpan < PrefixSpan”. For any minimum sup-
port, ConSgen is at least six times faster than VGEN while
VGEN is faster than CloSpan and much faster than

PrefixSpan. Fig. 6b shows the runtime on dataset Protein and
the details are shown in Table 4. We can see that VGEN is
slightly faster than CloSpan and CloSpan slightly faster than
PrefixSpan with the minimum support threshold ranging
from a low of 2.0 percent to a high of 3.5 percent. While
ConSgen is significantly faster than VGEN, CloSpan, and
PrefixSpan for any support threshold. From Fig. 6 and the
above two tables, we observe that ConSgen consumes much
less running time in comparisonwith three other algorithms,
especially when the support is low or the dataset is dense.

We compare the memory consumption among the four
algorithms, ConSgen, VGEN, CloSpan, and PrefixSpan for
both dataset DNA and dataset Protein. Fig. 7a shows the
results for DNA dataset, from which we can see that ConS-
gen is efficient in memory usage. It consumes more than an
order of magnitude less memory than VGEN, CloSpan, and
PrefixSpan. For any minimum support, ConSgen only needs
about 52 MB memory space while three other algorithms
cost more than 320 MB. Fig. 7b exhibits the memory usage

Fig. 4. Pattern Number comparison of the four patters on two datasets. (a) Pattern number comparison among SPs, CloSPs, SGs, and ConSGs with
s ranging from 2.0 to 4.0 percent on dataset DNA. (b) Pattern number comparison among the four patterns with s ranging from 1.5 to 3.5 percent on
dataset Protein.

Fig. 5. Average length comparison between SGs and ConSGs. (a) Average length comparison between SGs and ConSGs with s ranging from 2.0 to
4.0 percnt on dataset DNA. (b) Average length comparison of the two patterns with s ranging from 1.5 to 3.5 percent on dataset Protein.

TABLE 3
Runtime on Dataset DNA (in Seconds)

Alogrithm 2.0% 2.5% 3.0% 3.5% 4.0%

PrefixSpan 127.421 119.652 111.836 109.615 94.554
CloSpan 29.549 26.053 22.623 20.720 18.318
VGEN 18.493 15.073 13.067 10.455 8.479
ConSgen 2.465 2.204 1.424 1.278 1.246

BIDE 852.838 757.647 679.089 666.343 585.893
FSGP 4,531.531 2,326.169 1,496.641 1,037.078 700.397
FEAT 10,702.359 7,362.832 5,840.557 4,576.874 3,486.744

ZHANG ET AL.: MINING CONTIGUOUS SEQUENTIAL GENERATORS IN BIOLOGICAL SEQUENCES 863

for protein dataset, from which we can see that CloSpan is
also more efficient than three other algorithms as well as on
DNA dataset. From the above two sub-figures, it can be
demonstrated that CloSpan significantly outperforms
VGEN, CloSpan, and PrefixSpan algorithms in memory
usage in all cases. Our memory usage analysis also shows
part of the reason why some algorithms become really slow
because the huge number of patterns may occupy a tremen-
dous amount of memory.

The above measures demonstrate the efficiency of ConS-
gen. The capability of ConSgen in runtime remains more
stable than the state-of-the-art approaches: VGEN, CloSpan,
PrefixSpan, BIDE, FSGP, and FEAT over the range of sup-
port thresholds.

4.4 Scalability Study

For testing the scalability of ConSgen, we also randomly
sampled four other DNA datasets and four other protein
datasets from dataset AX829204 and dataset WP_044990988
respectively. Moreover, both dataset DNA and dataset Pro-
tein as sampled earlier are added and reused in the follow-
ing experiments.

Fig. 8a shows the space usage scalability tests of the four
algorithms on dense dataset DNA, with the database size
growing from 1 to 5 K sequences, and with support thresh-
old s ¼ 3:0%. We can see that ConSgen is efficient in mem-
ory usage. It consumes more than an order of magnitude
less memory than VGEN, CloSpan, and PrefixSpan. For
example, on dataset DNA_3K, CloSpan occupies 670 MB
memory and PrefixSpan 764 MB memory while ConSgen
only uses 51 MB memory. The sequential generator mining
algorithm, VGEN, can not complete the searching when the
database size is more than 2 K because it ran out of memory.
Similarly, Fig. 8b shows the space usage scalability test

results using the Protein dataset series with support thresh-
old s ¼ 2:5%. On such sparse datasets, ConSgen is also
more memory efficient for a wide range of database size
compared to three other algorithms.

We also tested the runtime scalability of the four algo-
rithms on dataset series of the DNA and Protein with
s ¼ 3:0% and s ¼ 2:5% when database size is varied from 1
to 5 K as shown in Fig. 9. From Fig. 9a, we see that ConSgen
consumes more than an order of magnitude less runtime
than both VGEN and CloSpan, while it uses more than two
orders of magnitude less runtime than PrefixSpan. As we
noted earlier, VGEN runs out of memory when the database
size grows up to 3 K. Fig. 9b shows the results of scalability
tests on the sparse dataset series. The VGEN algorithm is
slightly faster than CloSpan and CloSpan slightly faster
than PrefixSpan. While ConSgen has the least runtime com-
pared to three other algorithms.

The above results demonstrate the scalability of ConS-
gen. Specifically, it has very good scalability in terms of
both the database size and the support threshold. In addi-
tion, it is more stable in both memory and time consump-
tion than VGEN, CloSpan, and PrefixSpan.

5 RELATED WORK

Frequent sequential pattern mining, first introduced by
Agrawal and Srikant [31], has been widely studied and
many efficient algorithms have been proposed [12], [32],
[33], [34], [35]. Three typical algorithms, namely GSP [32],
SPADE [34], and PrefixSpan [12] are successively pro-
posed for mining the full set of general sequential pat-
terns. Overall, PrefixSpan has a better performance [36]
compared to the previous sequential pattern mining algo-
rithms. Due to the exponential number of sequential pat-
terns, many studies have focused on developing concise
representations of sequential patterns[13], [15], [16], [17],
[19], [20], [21], [22], [27], [37], [38], [39]. Among these pat-
terns, closed sequential patterns [13], [27], [37] and
sequential generators [15], [16], [17] have attracted a great
deal of attention since they are two important lossless
compression of frequent sequential patterns.

Two famous algorithms, CloSpan and BIDE, are succes-
sively introduced by Yan et al. [27] and Wang et al. [13] for
mining closed sequential patterns. The former is based on
the search framework of PrefixSpan and also uses projected
databases to recursively mine closed sequential patterns.
The latter uses a sequence closure checking scheme called

Fig. 6. Runtime comparison of the four algorithms on two datasets. (a) Runtime comparison among PrefixSpan, CloSpan, VGEN, and ConSgen with s
ranging from 2.0 to 4.0 percent on datasetDNA. (b) Runtime comparison of the four algorithmswith s ranging from 1.5 to 3.5 percent on datasetProtein.

TABLE 4
Runtime on Dataset Protein (in Seconds)

Alogrithm 1.5% 2.0% 2.5% 3.0% 3.5%

PrefixSpan 8.892 7.628 5.975 5.257 4.805
CloSpan 9.174 6.772 5.602 4.930 4.416
VGEN 8.900 5.546 4.476 3.577 3.179
ConSgen 4.290 3.324 2.021 1.844 1.839

BIDE 85.450 61.686 48.904 41.902 35.17
FSGP 592.676 172.945 71.870 33.478 18.205
FEAT 893.854 458.831 290.619 193.728 130.158

864 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2016

BI-Directional Extension and prunes the search space by
BackScan pruning strategy. Three typical algorithms, FEAT
[17], FSGP [16], and VGEN [15] are developed for mining
sequential generators. The first two of them employ a pat-
tern-growth approach by extending the PrefixSpan algo-
rithm. While VGEN performs a depth-first exploration of
the search space using a vertical representation of the data-
base, which has a steadily better performance in terms of
runtime efficiency. Even with various kinds of enhance-
ments, the above sequential pattern mining algorithms still
encounter a challenge that they spawn a rather large pattern
set, since the mining process needs to generate an explosive
number of smaller subsequences.

From the mining mechanism point of view, the sequen-
tial pattern mining algorithms including upper-closed and

lower-closed ones can be categorized into A priori-based
[15], [32], [34], [35], [40] and pattern-growth [12], [16], [17],
[27], [29], [33], [41], [42] ones. The A priori-based algo-
rithms, in order to find all frequent sequential patterns
including closed sequential patterns and sequential genera-
tors, in each iteration, need to enumerate all possible combi-
nations of frequent subsequences formed in last pass to
produce potential longer sequences, which is inherently
costly in both runtime and space usage. For example, based
on the reports of [43], PrefixSpan takes about 6,000 seconds
to enumerate all the 29,711,305 frequent patterns in which
only 15,200 patterns are closed when the minimum support
is 0.3 percent on the real data set CSLOGS; and the volume
of id-lists by SPADE or ISM algorithms is several times
larger than that of initial database. Similarly, the classic

Fig. 7. Memory usage comparison of four algorithms on two datasets. (a) Memory usage comparison among PrefixSpan, CloSpan, VGEN, and
ConSgen with s ranging from 2.0 to 4.0 percent on dataset DNA. (b) Memory usage comparison of the four algorithms with s ranging from 1.5 to
3.5 percent on dataset Protein.

Fig. 8. Scalability test of the memory usage. (a) Memory usage comparison among PrefixSpan, CloSpan, VGEN, and ConSgen for database sizes
varying from 1 to 5 K sequences on dataset DNA. (b) Memory usage comparison among the four algorithms for database sizes varying from 1 to 5 K
sequences on dataset Protein.

Fig. 9. Scalability test of the time usage. (a) Runtime comparison among PrefixSpan, CloSpan, VGEN, and ConSgen for database sizes varying from
1 to 5 K sequences on dataset DNA. (b) Runtime comparison among the four algorithms for database sizes varying from 1 to 5 K sequences on
dataset Protein.

ZHANG ET AL.: MINING CONTIGUOUS SEQUENTIAL GENERATORS IN BIOLOGICAL SEQUENCES 865

pattern-growth algorithms begin with a frequent pattern,
and grow the pattern when traversing the sequence search
space. They often fail to terminate in reasonable time and
run out of memory since the daunting number of candidate
sub-patterns or frequent sub-trees causes intractable work-
load. As discussed earlier, both pre-pruning and post-prun-
ing techniques can not be pushed into the closed sequential
pattern and sequential generator mining algorithms for per-
forming our mining task. Therefore, previous methods
devised for upper-closed or lower-closed sequential pattern
mining cannot be applied to contiguous sequential generator
mining, which makes such mining a quite challenging task.

Mining sequential generators by imposing the contiguous
constraint can achieve a better performance compared tomin-
ing upper-closed and lower-closed sequential generator. In
addition, the adjacency of patterns has presented convincing
arguments that it can minimize the result set and is beneficial
for classifying sequences in some particular applications.
However, to our best knowledge, no attention has been paid
to feeding such feature along with pattern lower-closure
property tomining contiguous sequential generators.

Discovering frequent subsequences as sequential pat-
terns in a set of biological sequences is evidence that the pat-
terns occur not by chance but because they share some
biological function. For example, the shared biological
function which accounts for the similarity of a subset of
sequential patterns might be a conserved functional motif.
However, a sequential pattern does not necessarily mean a
motif. Generally, the set of motifs is only a small subset of
the frequent subsequences. If we directly identify the motifs
from the big dataset or the growing explosive data scale, the
finding process is prohibitively expensive in both runtime
and space usage. An nice alternative solution to the problem
can be designed: the compact subsequences, such as contig-
uous sequential generators, are discovered first, and the
subsequences are then used to identify the motifs, which
significantly reduces computation cost and improves the
accuracy of finding motifs.

6 CONCLUSION

We introduced and studied the problem of mining contigu-
ous sequential generators in biological sequences. We
proposed ConSgen to identify contiguous sequential genera-
tors, which minimizes the inefficient and redundant patterns
and greatly reduces the search space. By using the n-gram
model, ConSgen splits the input sequences to generate the
pattern candidates, which accurately preserve the items’
occurrences in original sequences. And then, it utilizes redun-
dant snippet pruning,max-prefix-suffix pruning and support prun-
ing to prune the unpromising search space. Finally, ConSgen
launches a divide-and-conquer technique called equivalence
class-based lower-closure checking scenario to efficiently find
the sequential generators with contiguous constraint.

We used two real-life data sets with varied densities to
study the performance of ConSgen algorithm. Experimental
study demonstrated that the set of contiguous sequential
generators discovered by ConSgen is much more compact
than the set of general sequential patterns, especially when
feeding a low support threshold or a pattern-enriched data-
base. Moreover, ConSgen is more efficient in terms of both

runtime and memory usage, which is preferable to the
state-of-the-art algorithms (VGEN, CloSpan, PrefixSpan,
BIDE, FSGP, and FEAT) for big data processing.

Although ConSgen focuses on the discovering of contig-
uous sequential generators without considering the gapped
alignments, it is also feasible to extend this line for gapped
sequential generator mining. Thus, ConSgen can be further
exploited to discover the binding sites, conserved domains,
and functional motifs in biological sequences, which are
interesting issues for future research.

ACKNOWLEDGMENTS

The authors are grateful to Assistant Prof. P. Fournier-viger
for releasing the source codes of the compared algorithms.
Also, they would like to express their thanks to Dr. Liang
Tao and Dr. Dingyu Yang for helpful discussions and sug-
gestions during the development of ConSgen and helpful
comments on the manuscript. In addition, they would also
like to thank the editors and anonymous reviewers. This
work was supported by the National Natural Science Foun-
dation of China (NSFC, under the Grant No. 61375053) and
the National High Technology Research and Development
Program of China (863 Program No. 2009AA04Z106).
Y. Wang is the corresponding author.

REFERENCES

[1] C.-W. Huang, W.-S. Lee, and S.-Y. Hsieh, “An improved heuristic
algorithm for finding motif signals in dna sequences,” IEEE/ACM
Trans. Comput. Biol. Bioinformat., vol. 8, no. 4, pp. 959–975, Jul.
2011.

[2] P. Machanick and T. L. Bailey, “Meme-chip: Motif analysis of large
dna datasets,” Bioinformatics, vol. 27, no. 12, pp. 1696–1697, 2011.

[3] C.-H. Wei, B. R. Harris, H.-Y. Kao, and Z. Lu, “tmvar: A text min-
ing approach for extracting sequence variants in biomedical liter-
ature,” Bioinformatics, p. btt156, 2013.

[4] Z. Yao, K. L.MacQuarrie, A. P. Fong, S. J. Tapscott,W. L. Ruzzo, and
R. C. Gentleman, “Discriminative motif analysis of High-through-
put dataset,” Bioinformatics, vol. 30, no. 6, pp. 775–783, 2014.

[5] S. Tanaka, “Improved exact enumerative algorithms for the
planted (l, d)-motif search problem,” IEEE/ACM Trans. Comput.
Biol. Bioinformat., vol. 11, no. 2, pp. 361–374, Mar./Apr. 2014.

[6] K.-S. Leung, K. H. Lee, J.-F. Wang, E. Y. Ng, H. L. Chan, S. K. Tsui,
T. S. Mok, P.-H. Tse, and J.-Y. Sung, “Data mining on dna sequen-
ces of hepatitis b virus,” IEEE/ACM Trans. Comput. Biol. Bioinfor-
mat., vol. 8, no. 2, pp. 428–440, Mar./Apr. 2011.

[7] C. Felicioli and R. Marangoni, “Bpmatch: An efficient algorithm
for a segmental analysis of genomic sequences,” IEEE/ACM Trans.
Comput. Biol. Bioinformat., vol. 9, no. 4, pp. 1120–1127, July/Aug.
2012.

[8] T. L. Bailey, “Dreme: Motif discovery in transcription factor Chip-
seq data,” Bioinformatics, vol. 27, no. 12, pp. 1653–1659, 2011.

[9] A. K. Wong and E.-S. A. Lee, “Aligning and clustering patterns to
reveal the protein functionality of sequences,” IEEE/ACM Trans.
Comput. Biol. Bioinformat., vol. 11, no. 3, pp. 548–560, May/Jun.
2014.

[10] P. Boyen, F. Neven, D. Van Dyck, F. L. Valentim, and A. D. van
Dijk, “Mining minimal motif pair sets maximally covering interac-
tions in a protein-protein interaction network,” IEEE/ACM Trans.
Comput. Biol. Bioinformat., vol. 10, no. 1, pp. 73–86, Jan./Feb. 2013.

[11] J. M. Freire, S. A. Dias, L. Flores, A. S. Veiga, and M. A. Castanho,
“Mining viral proteins for antimicrobial and Cell-penetrating
drug delivery peptides,” Bioinformatics, p. btv131, 2015.

[12] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U.
Dayal, and M.-C. Hsu, “Mining sequential patterns by pattern-
growth: The prefixspan approach,” IEEE Trans. Knowl. Data Eng.,
vol. 16, no. 11, pp. 1424–1440, Nov. 2004.

[13] J. Wang, J. Han, and C. Li, “Frequent closed sequence mining
without candidate maintenance,” IEEE Trans. Knowl. Data Eng.,
vol. 19, no. 8, pp. 1042–1056, Aug. 2007.

866 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2016

[14] J. Zhang, Y. Wang, and D. Yang, “Ccspan: Mining closed contigu-
ous sequential patterns,”Knowl.-Based Syst., vol. 89, pp. 1–13, 2015.

[15] P. Fournier-Viger, A. Gomariz, M. �Sebek, and M. Hlosta, “Vgen:
Fast vertical mining of sequential generator patterns,” in Proc.
Data Warehousing Knowl. Discovery, 2014, pp. 476–488.

[16] S. Yi, T. Zhao, Y. Zhang, S. Ma, and Z. Che, “An effective algo-
rithm for mining sequential generators,” Procedia Eng., vol. 15,
pp. 3653–3657, 2011.

[17] C. Gao, J. Wang, Y. He, and L. Zhou, “Efficient mining of frequent
sequence generators,” in Proc. 17th Int. Conf. World Wide Web,
2008, pp. 1051–1052.

[18] B. Kao, M. Zhang, C.-L. Yip, D. W. Cheung, and U. Fayyad,
“Efficient algorithms for mining and incremental update of maxi-
mal frequent sequences,” Data Mining Knowl. Discovery, vol. 10,
no. 2, pp. 87–116, 2005.

[19] U. Yun, G. Lee, and K. H. Ryu, “Mining maximal frequent pat-
terns by considering weight conditions over data streams,”
Knowl.-Based Syst., vol. 55, pp. 49–65, 2014.

[20] J. Zhang, Y. Wang, and H. Wei, “An interaction framework of Ser-
vice-oriented ontology learning,” in Proc. 21st ACM Int. Conf. Inf.
Knowl. Manage., 2012, pp. 2303–2306.

[21] C.-Y. Tsai and B.-H. Lai, “A Location-item-time sequential pattern
mining algorithm for route recommendation,” Knowl.-Based Syst.,
vol. 73, pp. 97–110, 2015.

[22] J. Zhang, Y. Wang, and D. Yang, “Automatic learning common
definitional patterns from Multi-domain wikipedia pages,” in
Proc. IEEE Int. Conf. Data Mining Workshop., 2014, pp. 251–258.

[23] D. Lo, S.-C. Khoo, and J. Li, “Mining and ranking generators of
sequential patterns,” in Proc. SDM, 2008, pp. 553–564.

[24] Z. Zeng, J. Wang, J. Zhang, and L. Zhou, “Fogger: An algorithm
for graph generator discovery,” in Proc. 12th Int. Conf. Extending
Database Technol.: Adv. Database Technol., 2009, pp. 517–528.

[25] J. Rissanen, “Minimum description length principle,” Encyclopedia
Mach. Learn., pp. 666–668, 2010.

[26] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering fre-
quent closed itemsets for association rules,” in Proc. 7th Int. Conf.
Database Theory, 1999, pp. 398–416.

[27] X. Yan, J. Han, and R. Afshar, “Clospan: Mining closed sequential
patterns in large datasets,” in Proc. SIAM Int. Conf. Data Mining,
2003, pp. 166–177.

[28] R. Agrawal, R. Srikant, et al., “Fast algorithms for mining associa-
tion rules,” in Proc. 20th Int. Conf. Very Large Data Bases, 1994,
vol. 1215, pp. 487–499.

[29] J. Wang and J. Han, “Bide: Efficient mining of frequent closed
sequences,” in Proc. 20th Int. Conf. Data Eng., 2004, pp. 79–90.

[30] P. F. Viger, A. Gomariz, T. Gueniche, A. Soltani, C.-W. Wu, and
V. S. Tseng, “Spmf: A java open-source pattern mining library,”
J. Mach. Learn. Res., vol. 15, pp. 3389–3393, 2014.

[31] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proc.
11th Int. Conf. Data Eng., 1995, pp. 3–14.

[32] R. Srikant and R. Agrawal, Mining Sequential Patterns: Generaliza-
tions and Performance Improvements. New York, NY, USA: Springer,
1996.

[33] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu,
“Freespan: Frequent pattern-projected sequential pattern min-
ing,” in Proc. 6th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2000, pp. 355–359.

[34] M. J. Zaki, “Spade: An efficient algorithm for mining frequent
sequences,”Mach. Learn., vol. 42, no. 1-2, pp. 31–60, 2001.

[35] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential pattern
mining using a bitmap representation,” in Proc. 8th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2002, pp. 429–435.

[36] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern mining:
Current status and future directions,” Data Mining Knowl. Discov-
ery, vol. 15, no. 1, pp. 55–86, 2007.

[37] J. Pei, J. Liu, H. Wang, K. Wang, S. Y. Philip, and J. Wang,
“Efficiently mining frequent closed partial orders,” in Proc. IEEE
13th Int. Conf. Data Mining, 2005, pp. 753–756.

[38] C. Luo and S. M. Chung, “Efficient mining of maximal
sequential patterns using multiple samples,” in Proc. SDM,
2005, pp. 415–426.

[39] C. Zhang, J. Han, L. Shou, J. Lu, and T. La Porta, “Splitter: Mining
Fine-grained sequential patterns in semantic trajectories,” Proc.
VLDB Endowment, vol. 7, no. 9, pp. 769–780, 2014.

[40] M. Zhang, B. Kao, C.-L. Yip, and D. Cheung, “A Gsp-based effi-
cient algorithm for mining frequent sequences,” in Proc. IC-AI,
2001, pp. 497–503.

[41] F. Guil and R. Mar�ın, “A tree structure for Event-based sequence
mining,” Knowl.-Based Syst., vol. 35, pp. 186–200, 2012.

[42] G. Pyun, U. Yun, and K. H. Ryu, “Efficient frequent pattern min-
ing based on linear prefix tree,” Knowl.-Based Syst., vol. 55,
pp. 125–139, 2014.

[43] L. Chang, T. Wang, D. Yang, H. Luan, and S. Tang, “Efficient algo-
rithms for incremental maintenance of closed sequential patterns in
large databases,”Data Knowl. Eng., vol. 68, no. 1, pp. 68–106, 2009.

Jingsong Zhang received the MSc degree in
computer science from the University of Shang-
hai for Science and Technology. He is currently
working toward the PhD degree in the Depart-
ment of Computer Science and Engineering,
Shanghai Jiao Tong University. He will be a
postdoctoral fellow in Shanghai Institutes for
Biological Sciences, CAS. His research interests
include data mining, sequential pattern mining,
and bioinformatics. His research is currently
supported in part by the National Natural Science

Foundation of China (NSFC) and the National High Technology
Research and Development Program of China (863 Program). He has
been a reviewer for some academic conferences.

Yinglin Wang received the PhD degree in com-
puter science from the Nanjing University of Sci-
ence and Technology in 1998. His research
interests include data mining, knowledge man-
agement, and software requirement analysis. He
is currently a full professor in the Department of
Computer Science and Technology at the Shang-
hai University of Finance and Economics. Previ-
ously, he was a full professor in the Department
of Computer Science and Engineering at the
Shanghai Jiao Tong University. He has chaired

or served in some program committees of international conferences,
and has been a reviewer for some academic journals. He is a member of
the IEEE Computer Society.

Chao Zhang received both the BS and MS
degrees in computer science from Zhejiang Uni-
versity. He is currently working toward the PhD
degree in the Department of Computer Science,
University of Illinois at Urbana-Champaign. His
research interests include spatiotemporal data
mining and information network analysis.

Yongyong Shi received the dual bachelor
degrees of both biotechnology and international
economy and trade, and the PhD degree in bio-
chemistry and molecular biology from Shanghai
Jiao Tong University, China, in 2001 and 2006,
respectively. He is currently the distinguished
professor in the Bio-X Institutes at Shanghai Jiao
Tong University. His primary research interest is
the genetic studies of complex traits, including
mental disorders, tumors, and metabolic dis-
eases. He has published more than 100 papers

in leading international journals including corresponding author or first
author for seven publications in Nature Genetics, one publication in
Nature Nanotechnology; co-first author or co-author for five publications
in Nature Genetics, one publication in Nature, and one publication in
JAMA. He has received various awards/honors including the Cheung
Kong Scholar of the Ministry of Education of China, the winner of
national outstanding youth fund of China, the Author of National Excel-
lent Doctoral Dissertation of China, the Laureates of Tan Jiazhen Life
Science Innovation Award, the Leading Scientist of National 973 Project
2015CB559100 of China. He is a co-editor-in-chief of Hereditas, mem-
ber of the editorial board of Experimental Biology and Medicine, and on
the editorial boards of various other journals.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ET AL.: MINING CONTIGUOUS SEQUENTIAL GENERATORS IN BIOLOGICAL SEQUENCES 867

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

